Exponential Functions

2. Infections seldom start with a single bacterium. Suppose that you cut yourself on a rusty nail that puts **10 bacteria** cells into the wound. Suppose also that those bacteria **triple** after every quarter of an hour. (Assume that your body does not fight off the infection and you do not apply medication.)

a. Complete the table below						
Number of	0	1	2	3	4	5
quarter hour						
periods						
Number of						
Bacteria in						
the Cut						

- **b.** Write a recursive rule showing how the number of bacteria changes from one quarter-hour to the next, starting from 10 at time 0.
- **C.** Write a rule showing how to calculate the number of bacteria *N* in the cut after *x* quarter-hour time periods.
- **d** Use the rule in either Parts b or c to calculate the number of bacteria after 3 hours.
- 1. If a basketball is properly inflated, it should rebound to about $\frac{3}{4}$ the height from which it is dropped.
- **a.** Make a table showing the pattern to be expected in the first 5 bounces after a ball is dropped from a height of 10 feet.

Bounce	1	2	3	4	5
Height					

- **b.** Write a recursive rule and a rule beginning "y = ..." that can be used to calculate the rebound height after many bounces
- **C.** At which bounce will the ball first rebound less than 1 foot?

х	0	1	2	3
У	5	10	20	40

1. Write the recursive rule and the explicit/function rule for the table above.

Function Notation and Exponential Functions

x	0	1	2	3	4	5	6
У	1	3	9	27	81	243	729

Use the table above to find:

a.) f(0) = b.) f(2) = c.) f(x) = 81 d.) f(x) = 729

Use the equation, $f(x) = 3(2)^x$ to find the following

a. f(1) = b.) f(2) = c.) f(x) = 24 d.) f(x) = 48